
Modern R with the
{tidyverse}

Bruno Rodrigues

2023-07-02

Table of contents

Welcome! 1
Learn the R programming language and the {tidy-

verse} suite of packages 1

1 Preface 3

2 Introduction 5
2.1 What is R? What are packages? 5
2.2 Why learn R? . 5
2.3 Who is this book for? 6
2.4 Why this book? 7
2.5 Why modern R? 8
2.6 What to expect from this book? 10
2.7 The author? . 11

3 Getting to know RStudio 13
3.1 Panes . 13
3.2 Console . 15
3.3 Scripts . 16

3.3.1 The help pane 17
3.3.2 The Environment pane 19

3.4 Projects . 19
3.5 History . 21
3.6 Plots . 21
3.7 Addins . 22
3.8 Packages . 24

iii

Table of contents

3.9 Exercises . 27
Exercise 1 . 27

4 Conclusion 29

5 References 31

iv

Welcome!

Learn the R programming language and
the {tidyverse} suite of packages

1

1 Preface

3

2 Introduction

2.1 What is R? What are packages?

Read R’s official answer to this question here1. To make it short:
R is a multi-paradigm (procedural, imperative, object-oriented
and functional) programming language that focuses on appli-
cations in statistics. By statistics I mean any field that uses
statistics such as official statistics, economics, finance, data sci-
ence, machine learning, etc. For the sake of simplicity, I will
use the word “statistics” as a general term that encompasses all
these fields and disciplines for the remainder of this book. R
and RStudio are the two main pieces of software that we are
going to use. R is the programming language and RStudio is a
modern IDE for it, made by a company called Posit (formerly
the company was also called RStudio). There are several other
IDEs that you can use though, but if you’re a beginner RStudio
is very good choice.

2.2 Why learn R?

R is widely used and popular. It has been around for more than
3 decades and chances are that it will continue to stick around
for many decades to come.

1https://cran.r-project.org/doc/FAQ/R-FAQ.html#What-is-R_003f

5

https://cran.r-project.org/doc/FAQ/R-FAQ.html#What-is-R_003f

2 Introduction

TO ADD MORE STUFF

To start using R, simply install it. Installation is simple, but
operating system dependent. To download and install R for
Windows, follow this link2. For macOS, follow this one3. If
you run a GNU+Linux distribution, you can install R using the
system’s package manager. If you’re running Ubuntu, you might
want to take a look at r2u4, which provides very fast installation
of packages, full integration with apt (so dependencies get solved
automatically) and covers the entirety of CRAN.

To use R, I recommend also installing RStudio. RStudio is a
very popular text editor suited for R development. To install
RStudio, look for your operating system here5. There are other
popular choice to write R code, such as VS Code and Emacs
(with ESS), but if you’re a beginner RStudio is a solid choice.

2.3 Who is this book for?

This book can be useful to different audiences. If you have never
used R in your life, and want to start, start with Chapter 1 of
this book. Chapter 1 to 3 are the very basics, and should be
easy to follow up to Chapter 7. Starting with Chapter 7, it gets
more technical, and will be harder to follow. But I suggest you
keep on going, and do not hesitate to contact me for help if you
struggle! Chapter 7 is also where you can start if you are already
familiar with R and the {tidyverse}, but not functional pro-
gramming. If you are familiar with R but not the {tidyverse}
(or have no clue what the {tidyverse} is), then you can start

2https://cloud.r-project.org/bin/windows/base/
3https://cloud.r-project.org/bin/macosx/
4https://github.com/eddelbuettel/r2u
5https://posit.co/download/rstudio-desktop/

6

https://cloud.r-project.org/bin/windows/base/
https://cloud.r-project.org/bin/macosx/
https://github.com/eddelbuettel/r2u
https://posit.co/download/rstudio-desktop/

2.4 Why this book?

with Chapter 4. If you are familiar with R, the {tidyverse}
and functional programming, you might still be interested in
this book, especially Chapter 9 and 10, which deal with package
development and further advanced topics respectively.

2.4 Why this book?

This book is first and foremost for myself. This book is the
result of years of using and teaching R at university and then
at my jobs. During my university time, I wrote some notes to
help me teach R and which I shared with my students. These
are still the basis of Chapter 2. Then, once I had left university,
and continued using R at my first “real” job, I wrote another
book that dealt mostly with package development and functional
programming. This book is now merged to this one and is the
basis of Chapters 9 and 10. During these years at my first job,
I was also tasked with teaching R. By that time, I was already
quite familiar with the {tidyverse} so I wrote a lot of notes
that were internal and adapted for the audience of my first job.
These are now the basis of Chapters 3 to 8. Then, during all
these years, I kept blogging about R, and reading blogs and
further books. All this knowledge is condensed here, so if you
are familiar with my blog, you’ll definitely recognize a lot of my
blog posts in here. So this book is first and foremost for me,
because I need to write all of this down in a central place. So
because my target audience is myself, this book is free. If you
find it useful, and are in the mood of buying me a coffee, you can,
but if this book is not useful to you, no harm done (unless you
paid for it before reading it, in which case, I am sorry to have
wasted your time). But I am quite sure you’ll find some of the
things written here useful, regardless of your current experience
level with R.

7

2 Introduction

2.5 Why modern R?

Modern R instead of “just” R because we are going to learn how
to use modern packages (mostly those from the {tidyverse}6)
and concepts, such as functional programming (which is quite
an old concept actually, but one that came into fashion recently).
R is derived from S, which is a programming language that has
roots in FORTRAN and other languages too. If you learned R at
university, you’ve probably learned to use it as you would have
used FORTRAN; very long scripts where data are represented
as matrices and where row-wise (or column-wise) operations are
implemented with for loops. There’s nothing wrong with that,
mind you, but R was also influenced by Scheme and Common
Lisp, which are functional programming languages. In my opin-
ion, functional programming is a programming paradigm that
works really well when dealing with statistical problems. This
is because programming in a functional style is just like writing
math. For instance, suppose you want to sum all the elements of
a vector. In mathematical notation, you would write something
like:

[�{i = 1}^{100} x{i}]

where 𝑥 is a vector of length 100. Solving this using a loop would
look something like this:

res <- 0
for(i in 1:length(x)){

res <- x[i] + res
}

6https://posit.co/download/rstudio-desktop/

8

https://www.tidyverse.org/

2.5 Why modern R?

This does not look like the math notation at all! You have to
define a variable that will hold the result outside of the loop,
and then you have to define res as something plus res inside
the body of the loop. This is really unnatural. The functional
programming approach is much easier:

Reduce(`+`, x)

We will learn about Reduce() later (to be more precise, we will
learn about purrr::reduce(), the “tidy” version of Reduce()),
but already you see that the notation looks a lot more like the
mathematical notation.

At its core, functional programming uses functions, and func-
tions are so-called first class objects in R, which means that
there is nothing special about them… you can pass them to other
functions, create functions that return functions and do any kind
of operation on them just as with any other object. This means
that functions in R are extremely powerful and flexible tools. In
the first part of the book, we are going to use functions that are
already available in R, and then use those available in packages,
mostly those from the tidyverse. The tidyverse is a collec-
tion of packages developed by Hadley Wickham, and several
of his colleagues at RStudio, Inc. By using the packages from
the tidyverse and R’s built-in functional programming capa-
bilities, we can write code that is faster and easier to explain to
colleagues, and also easier to maintain. This also means that you
might have to change your expectations and what you know al-
ready from R, if you learned it at University but haven’t touched
it in a long time. For example for and while loops, are relegated
to chapter 8. This does not mean that you will have to wait
for 8 chapter to know how to repeat instructions N times, but
that for and while loops are tools that are very useful for very
specific situations that will be discussed at that point.

9

http://hadley.nz/

2 Introduction

In the second part of the book, we are going to move from using
R to solve statistical problems to developing with R. We are
going to learn about creating your own package. If you do not
know what packages are, don’t worry, this will be discussed just
below.

2.6 What to expect from this book?

The idea of Chapters 1 to 7 is to make you efficient with R
as quickly as possible, especially if you already have prior pro-
gramming knowledge. Starting with Chapter 8 you will learn
more advanced topics, especially programming with R. R is a
programming language, and you can’t write “programming lan-
guage” without “language”. And just as you wouldn’t expect to
learn French, Portuguese or Icelandic by reading a single book,
you shouldn’t expect to become fluent in R by reading a single
book, not even by reading 10 books. Programming is an art
which requires a lot of practice. Teach yourself programming
in 10 years is a blog post written by Peter Norvig which ex-
plains that just as with any craft, mastering programming takes
time. And even if you don’t need or want to become an ex-
pert in R, if you wish to use R effectively and in a way that
ultimately saves you time, you need to have some fluency in it,
and this only comes by continuing to learn about the language,
and most importantly practicing. If you keep using R every day,
you’ll definitely become very fluent. To stay informed about de-
velopments of the language, and the latest news, I advise you
read blogs, especially R-bloggers which aggregates blog posts by
more than 750 blogs discussing R.

So what you can expect from this book is that this book is not
the only one you should read.

10

http://www.norvig.com/21-days.html
http://www.norvig.com/21-days.html
https://www.r-bloggers.com/

2.7 The author?

2.7 The author?

to add stuff

11

3 Getting to know RStudio

RStudio is an IDE (Integrated development environment) for
the R programming language made by a company called Posit.
You can install RStudio by visiting this link1. Posit, also devel-
ops Shiny, a package to create full-fledged web-apps. I am not
going to cover Shiny in this book, since there’s already a lot2 of
material that you can learn from.

Once you have installed RStudio, launch it and let’s go through
the interface together.

3.1 Panes

RStudio is divided into different panes. Each pane has a specific
function. The image below shows some of these panes:

1https://posit.co/download/rstudio-desktop/
2https://shiny.posit.co/r/getstarted/next-steps/

13

https://posit.co/download/rstudio-desktop/
https://shiny.posit.co/
https://shiny.posit.co/r/getstarted/next-steps/

3 Getting to know RStudio

Figure 3.1: The different panes of RStudio.

Take some time to look around what each pane shows you. Some
panes are empty; for example the Plots pane or the Viewer pane.
Plots shows you the plots you make. You can browse the plots
and save them. We will see this in more detail in a later chapter.
Viewer shows you previews of documents that you generate with
R. More on this later. You can also minimize and maximize the
panes by clicking these two buttons:

14

3.2 Console

Figure 3.2: Minimize or maximize the panes.

3.2 Console

The Console pane is where you can execute R code. Write the
following in the console:

2 + 3

and you’ll get the answer, 5. However, do not write a lot of
lines in the console. It is better write your code inside a script.
Output is also shown inside the console.

15

3 Getting to know RStudio

Figure 3.3: You can execute code by typing it in the console.

3.3 Scripts

Instead of writing code in the console, it is better to write code
in a so-called script. Scripts are simple text files that can be
written and executed by RStudio. To write a new script, click
on the top-right icon and select “R script”:

16

3.3 Scripts

Figure 3.4: Select R Script to open an empty script.

In Figure 3.4, we see the user creating a new R script. If you
have a background in the social sciences you might be familiar
with STATA: STATA also uses scripts, colloquially called .do
files. The C programming language uses .c files. R scripts have
the .r or .R extension. But .R files are not the only type of files
that you can edit with RStudio. We will explore other formats
later in the book.

3.3.1 The help pane

The Help pane allows you to consult documentation for R, its
packages etc:

17

3 Getting to know RStudio

Figure 3.5: Read the flipping manual.

You can also read the help file of a specific function by writing
?function in the console, where function is the function you
want to know about.

I highly recommend you take some time to check out the “CRAN
Task Views”. These views provide a very nice summary of the
different packages available for different scientific fields. For ex-
ample, if you’re doing econometrics, you should read the CRAN
Task View: Econometrics3.

3https://cran.r-project.org/web/views/Econometrics.html

18

https://cran.r-project.org/web/views/Econometrics.html
https://cran.r-project.org/web/views/Econometrics.html

3.4 Projects

Take some time to browse the different CRAN Task Views
here4.

3.3.2 The Environment pane

The Environment pane shows every object created in the cur-
rent section. It is especially useful if you have defined lists or
have loaded data into R as it makes it easy to explore these
more complex objects. As you will write code and create ob-
jects throughout a session, the environment pane will get more
and more populated.

3.4 Projects

One of the best features of RStudio are projects. Creating a
project is simple; simply click on the top right corner of RStudio
and then “New Project”:

4https://cran.r-project.org/web/views/

19

https://cran.r-project.org/web/views/

3 Getting to know RStudio

Figure 3.6: Here is how you create a project.

Projects make a lot of things easier, such as managing paths
(more on this in the chapter about reading data). Another useful
feature of projects is that the scripts you open in project A will
stay open even if you switch to another project B, and then
switch back to the project A again.

You can also use version control (with Git) inside a project. Ver-
sion control is very useful, but I won’t discuss it in this book.

20

3.5 History

3.5 History

The History pane saves all the previous lines you executed. You
can then select these lines and send them back to the console or
the script.

Figure 3.7: The history pane contains all executed lines of code.

3.6 Plots

All the plots you make during a session are visible in the Plots
pane. From there, you can export them in different formats.

21

3 Getting to know RStudio

Figure 3.8: All the plots that you make get stored in the plots
pane.

There are several ways to create plots: later in the book I will
teach you some basics of the {ggplot2} package.

3.7 Addins

Some packages install addins, which are accessible through the
addins button:

22

3.7 Addins

Figure 3.9: You can browse the available addins.

These addins make it easier to use some functions and you can
read more about them here5.

There are other panes that I will not discuss here, but you will
naturally discover their use as you go. For example, we will
discuss the Build pane in Chapter 11.

5https://rstudio.github.io/rstudioaddins/

23

https://rstudio.github.io/rstudioaddins/

3 Getting to know RStudio

3.8 Packages

You can think of packages as addons that extend R’s core func-
tionality. You can browse all available packages on CRAN6.
To make it easier to find what you might be interested in, you
can also browse the CRAN Task Views as mentioned previously.
Each package has a landing page that summarises its dependen-
cies, version number etc. For example, for the {dplyr} package:
https://CRAN.R-project.org/package=dplyr. To install a pack-
age, you can either type the following command in the console:

install.packages("dplyr")

or you can go to the Packages pane and click on the Install
button. Before installing a package, you can consult its manual
and vignettes online. For example, if you go back to {dplyr}’s
landing page, you can take a look at the Reference Manual and
Vignettes:

6https://cloud.r-project.org/

24

https://cloud.r-project.org/
https://cloud.r-project.org/web/views/
https://CRAN.R-project.org/package=dplyr

3.8 Packages

Figure 3.10: Always take the time to read the document of the
packages you use on a daily basis.

Vignettes are valuable documents; inside vignettes, the purpose
of the package is explained in plain English, usually with ac-
companying examples. The reference manuals list the available
functions inside the packages. You can also find vignettes from
within RStudio (but you need to install the package first):

25

3 Getting to know RStudio

Figure 3.11: You can consult the vignettes of installed packages.

Once you installed a package, you have to load it before you can
use it. To load packages you use the library() function:

library(dplyr)
library(janitor)
and so on...

If you only need to use one single function once, you don’t need
to load an entire package. You can write the following:

dplyr::full_join(A, B)

using the :: operator, you can access functions from packages
without having to load the whole package beforehand.

It is possible and easy to create your own packages. This is
useful if you have to write a lot of functions that you use daily.
We will lean about that, in Chapter 10.

26

3.9 Exercises

3.9 Exercises

Exercise 1

Change the look and feel of RStudio to suit your tastes! I person-
ally like to move the console to the right and use a dark theme.
Take some 5 minutes to customize by clicking on Tools and then
Global options. Browse through all the options.

27

4 Conclusion

29

5 References

31

	Welcome!
	Learn the R programming language and the {tidyverse} suite of packages

	Preface
	Introduction
	What is R? What are packages?
	Why learn R?
	Who is this book for?
	Why this book?
	Why modern R?
	What to expect from this book?
	The author?

	Getting to know RStudio
	Panes
	Console
	Scripts
	The help pane
	The Environment pane

	Projects
	History
	Plots
	Addins
	Packages
	Exercises
	Exercise 1

	Conclusion
	References

